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Abstract. We investigate the anisotropic integrable chain consisting of spinss = 1
2 and

s = 1. Depending on the anisotropy and the ratio of the coupling constants it has different
(antiferromagnetic) ground states, manifesting themselves in a different string content in the Bethe
ansatz framework. In this paper we continue the study of those regions with different string content,
below called sectors. First we compare the dispersion relations for the sectors with infinite Fermi
zones. Further we calculate the speeds of sound for regions close to sector borders, where the
Fermi radii either vanish or diverge, and compare the results.

1. Introduction

The integrable spin chainXXZ( 1
2, 1) constructed in 1992 by de Vega and Woynarovich [2]

shows a rich physical structure with different ground states depending on the anisotropy
parameter and the two coupling constants. In our previous papers [1, 3–5] we analysed
this structure and calculated several important quantities. In this paper we deal mainly with
dispersion relations and speeds of sound.

This is of special interest because in the model considered here several interesting features
occur at the same time, while they have been observed before only seperately in different
models. In [7], the occurrence of different gapless hole excitations with different velocities
was first proved for the integrableXXZ Heisenberg model with arbitrary spin. In addition the
situation changes drastically when spin and anisotropy are varied. Then the analogous effect
was observed for models with more than one coupling constant: where the ground state and as
a consequence the excitations depend on their ratios. Of peculiar interest were models of the
class considered in [8], in which one excitation splits into two branches with different (‘left’
and ‘right’) speeds of sound due to non-symmetric dressed energy functions. This fact has
been connected with the phenomenon of incommensurability.

We have established this splitting for two of our sectors [1]: for details see also sections 3
and 4. It is caused by the fact that the dressed energy function has a local maximum at zero
(maintaining its symmetry), so that the filling starts with infinity rather than with zero. Exactly
the same has been observed in an integrable generalized spin ladder model [9].

The paper is organized as follows. After reviewing the definitions in section 2 we remind
the reader of the results of our last paper [1] concerning the phase diagram. In the same section
the dispersion relations for all sectors with infinite Fermi zones only are compared. In section 4
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we present the calculations for the speeds of sound obtained either by power expansion or the
Wiener–Hopf technique for small or large Fermi radii respectively.

Our conclusions are contained in section 5. Some useful definitions are compiled in the
appendix.

2. Description of the model

We refer the reader to papers [2, 3] for the basics of the model.
Our Hamiltonian of a spin chain of length 2N is given by

H(γ ) = c̄H̄(γ ) + c̃H̃(γ ) (2.1)

with the two couplings̃c andc̄. The anisotropy parameterγ is limited to 0< γ < π/2. For
convenience we repeat the Bethe ansatz equations, the magnon energies and momenta and the
spin projection.(

sinh(λj + i γ2 )

sinh(λj − i γ2 )

sinh(λj + iγ )

sinh(λj − iγ )

)N
= −

M∏
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sinh(λj − λk + iγ )

sinh(λj − λk − iγ )
, j = 1 . . .M (2.2)
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2 sinγ

cosh 2λj − cosγ

Ẽ = −
M∑
j=1

2 sin 2γ

cosh 2λj − cos 2γ
(2.3)

P = i

2

M∑
j=1

{
log

(
sinh(λj + i γ2 )
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)
+ log

(
sinh(λj + iγ )
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)}
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Sz = 3N

2
−M. (2.5)

3. Phase structure and dispersion relations

In section 4 of [1] we carried out a complete analysis of the ground state structure based on
the solution of the thermodynamic Bethe ansatz. We now review the main results.

Table 1. All sectors appearing in the phase diagram. Upper indices indicate infinite and finite
Fermi zones. In the latter case, the second index distinguishes, whether the filling starts atλ = 0
or λ = ∞.

0 (1,+)∞, (2,+)∞

I (1,−)∞, (1,+)f,0

II (1,−)∞, (1,+)∞

III (1,−)∞, (1,+)f,∞

IV (1,−)∞
V (1,−)∞, (2,+)f,0

VI (1,−)f,∞, (2,+)∞

Using different sets of special anisotropy points we were able to prove that (for 0< γ <

π/2) only three kinds of strings occur in the ground state. The picture changes remarkably
at γ = π/3 andγ = 2π/5. All possible sectors are compiled in table 1 taken from [1]. To
keep our notation consistent we found it useful to call the sector already discussed in [2] sector
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0. In the(c̃, c̄)-plane the sector borders are straight lines starting from the origin. Moving
anticlockwise from thẽc-axis the sectors follow in sequence 0, I, IV, V if 0< γ 6 π/3. For
π/3 < γ < 2π/5 the sequence is 0, II, I, IV, VI and for 2π/5 < γ < π/2 one has 0, II, III,
IV, VI. In the case ofγ = 2π/5, sector II is followed by IV and neither I or III occur. For
details see figure 1 in [1].

From table 1 one can read, that the effect of velocity splitting mentioned in the introduction
occurs in sectors III and VI for the(1,+) and the(1,−) strings, respectively. Therefore in
both sectors we have three different speeds of sound instead of two: for details in sector III
see in section 4.

To compare the dispersion relations in the sectors 0, II and IV it is convenient to work
with the functions

p(λ, α, β) = arctan
sinh(πλ/β)

cos(πα/2β)
(3.1)

and

g(λ, α, β) = 4π

β

cos(πα/2β) cosh(πλ/β)

cosh(2πλ/β) + cos(πα/2β)
. (3.2)

While p is odd,g is an even function ofλ. Both are connected by

d

dλ
p(λ, α, β) = 1

2g(λ, α, β). (3.3)

By straightforward calculation one may prove the relation

sin
(π

2
+ p(λ, α, β)

)√
cos2p(λ, α, β) +

sin2p(λ, α, β)

cos2(πα/2β)
= β

2π
g(λ, α, β). (3.4)

We remark that in [4] we used a functiong(λ, α) related by

g(λ, α, π − γ ) = g(λ, α). (3.5)

Let us first consider sector 0. The results are given in [2], taking into account our definition
of momentum in equation (2.4). There are two elementary physical excitations: the holes in the
distributions of the(1,+)- and(2,+)-strings respectively. We label them by indexi, i = 1, 2.

pih(λ = λih) =
π

4
+

1

2
p(λ,0, γ ) (3.6)

εih(λ) = ci 1
2g(λ,0, γ ) (3.7)

with c1 = c̄ andc2 = c̃.
From equation (3.4) the dispersion relations follow

εih(p
i
h) =

2π

γ
ci

sin 2pih
2

. (3.8)

One may say that the dispersion relations diagonalize in the coupling constants. This fact
changes in the other two sectors.

Next we look at sector IV which contains the case of negative couplings. The exact border
lines are given in [5]. The elementary physical excitations are holes in the distribution of the
(1,−)-strings. We quote the result from our paper [3], equations (4.5) and (4.6)

ph(λ) = 3π

2
+

1

2
p(λ,0, π − γ ) + p(λ, γ, π − γ ) (3.9)

εh(λ) = − c̄
2
g(λ,0, π − γ )− c̃g(λ, γ, π − γ ). (3.10)
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The dispersion relation cannot be obtained in a closed form. One has to invert the monotone
function (3.9) and substitute it in equation (3.10). Numerical calculations show a sine-like
behaviour: see the broken curves in figure 2 of [3].

In [1] we found the new sector II, existing only forγ > π/3 (for the exact border lines
see section 4). Here the excitations are(1,+)- and(1,−)-string holes. The dispersion law for
the(1,−)-string holes is simple:

p1−
h (λ) =

π

4
+

1

2
p(λ,0, π − 2γ ) (3.11)

ε1−
h (λ) = −

c̃

2
g(λ,0, π − 2γ ) (3.12)

ε1−
h (p

1−
h ) = −

2πc̃

π − 2γ

sin 2p1−
h

2
. (3.13)

To write down the case of(1,+)-strings it is necessary to introduce a new functiond1(λ)

d1(λ) = 1

2π

∫ ∞
−∞

eiωλ cosh(ω(π − 3γ )/2)dω

2 cosh(ω(π − 2γ )/2) cosh(ωγ /2)
(3.14)

already used in [1]. We further define another functione1(λ) by

d

dλ
e1(λ) = d1(λ) and e1(0) = 0. (3.15)

p1+
h =

π

2
+

1

2
p(λ,0, γ ) + 2πe1(λ) (3.16)

ε1+
h = c̄ 1

2g(λ,0, γ ) + 2πc̃d1(λ). (3.17)

We have calculated the dispersion law numerically and show the results in figure 1. It is
interesting to look closer at the pointγ = 2π/5, where the functiond1(λ) simplifies and
becomes 1/4πg(λ, 0, γ ), resulting in the simple dispersion law

ε1+
h =

2π

γ

c̄ + c̃

2
sinp1+

h . (3.18)

All dispersion laws possess a symmetry connected with the properties of the functionsph(λ)

andεh(λ):

ph(λ) = p0 + p̄(λ) and p̄(−λ) = −p(λ) (3.19)

εh(λ) = εh(−λ). (3.20)

One then derives easily

εh(ph) = εh(2p0 − ph). (3.21)

In addition one has 06 ph 6 2p0. The constants 2p0 are different, so in sector 0 they areπ/2
for both excitations; the same is true for the negative parity excitation in II. The other (positive
parity) excitation in II has 2p0 = π , while in IV one has 2p0 = 3π/2.

There is a general rule for the sum of those constants in every sector being 3π/2 (due
to antiferromagnetic ground state), but excitations containing more than one magnon, e.g.
(2,+)-strings, must be taken with their appropriate multiplicity.

4. The speed of sound in different sectors

In this section we present some calculations for the speed of sound in sectors with one finite
Fermi radius (the other one stays infinite), where this radius is either small or large, so that an
approximation can be made. On the other hand, that gives just the values of the speed near to
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Figure 1. Dispersion relations for the holes in the(1,+)-string distributions in sector II for
c̄ = −5c̃ = 1 and differentγ .

the border lines of the above-mentioned sector which might be of interest for understanding
the physics of the model. We limit our calculations to the casec̄ > 0, c̃ < 0. Thus, the sectors
in question are I and III. Sectors V and VI could be treated in an analogous way.

We start with sector I. The equations of the thermodynamic Bethe ansatz can be taken
from [1] (equation (4.5)).

ε1+(λ) = −2πc̄s1(λ)− 2πc̃d1(λ) + d1 ∗ ε+
1+(λ) (4.1)

ε1−(λ) = 2πc̃s2(λ)− s2 ∗ ε+
1+(λ). (4.2)

Hereεi(λ) are the dressed energies. Their lower index specifies the excitation, while the upper
stands for the positive and negative parts respectively. The convolution is defined by

a ∗ b(λ) =
∫ ∞
−∞

dµa(λ− µ)b(µ). (4.3)

(For s1(λ) ands2(λ) see the appendix.)
Restrictingγ by 0< γ < 2π/5 we consider the case

0< β = c̄ − |c̃|
2 cosγ̃

� 1 (4.4)

with the usual definitioñγ = πγ/2(π − γ ).
From equation (3.13) from [4] we know thatβ = 0 describes the border line between

sectors IV and I.
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To employ the method of power expansions in the (small) Fermi radiusb of the (1,+)-
strings, it is useful to reformulate equations (4.1) and (4.2) in the way

ε1+(λ) = −c̄g(λ, π − 2γ )− c̃g(λ, π − 3γ )− 1

2π
g(λ, π − 3γ ) ∗ ε−1+(λ) (4.5)

ε1−(λ) = 2πc̄s1(λ) + c̃g(λ, γ ) +
1

2π
g(λ, γ ) ∗ ε−1+(λ). (4.6)

Equation (4.5) determines the Fermi radiusb: in lowest order the convolution term can be
neglected andb is given byε1+(b) = 0. The derivative dε/dp is calculated as (see equation
(5.1) in [1])

dε

dp
= dε

dλ

dλ

dp
= − dε

dλ

2

ε(λ)

∣∣∣∣
c̄=c̃=1

. (4.7)

The speed of sound is then given ifλ is put equal tob.
After rather long technical calculations we obtain

v1+ = 4π

π − γ
1

sinγ̃

√
2 cosγ̃ − 1

2 cosγ̃ + 1
(c̄β)1/2. (4.8)

Using equation (4.6) in the same way gives

v1− = 2π

π − γ (2 cosγ̃ − 1)c̄ +
8

π − γ sinγ̃

√
2 cosγ̃ − 1

2 cosγ̃ + 1
(c̄β)1/2. (4.9)

Here the first term is just the limiting value on the border of sector IV.
Next we considerπ/3< γ < 2π/5 and look for the border of sector I with sector II (see

[1], equation (4.10)). It is given by

0< α = |c̃| tan

(
π2

2γ

)
− c̄ � 1. (4.10)

Then equation (4.1) is of Wiener–Hopf type and can be solved explicitly for largeb giving

v1+ = 2π

γ

3γ − π
π − 2γ

α

1 + tan
(
π2

2γ

) . (4.11)

From equation (4.2) one has to extract the asymptotics ofε1−(λ) for largeλ (the Fermi radius
is infinite). The first term on the RHS gives the limiting value ofv1− on the border of sector
II (it is non-vanishing). Remarkably forα > 0 the asymptotics is always given by the second
term with the convolution. So the result is of the same order inα asv1+:

v1− = 2π

γ

3γ − π
γ

α

1 + tan
(
π2

2γ

) . (4.12)

Thereforev1− shows a discontinuity on the border I/II.
After sector I we consider sector III. Then one has 2π/5< γ < π/2. We start again with

the border to sector IV.

0< β ′ = c̄ − 2 cosγ̃ c̃ � 1. (4.13)

The Fermi radius is determined again from equation (4.5), but now instead of power expansion
we have to solve a Wiener–Hopf problem due to the fact thatb is large. The calculation
is straightforward after realizing that for the positive frequency part of the inhomogeneous
function one has to take into account the dominant two poles (instead of one). As already
mentioned in [1] the fact that filling of the(1,+)-strings starts at infinity causes the appearance
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of two velocities for them taken atλ = b andλ = ∞. While the calculations for both are
different, the results coincide in first order.

The same happens forv1− calculated from the asymptotics of equation (4.6). We remind
the reader thatv1− vanishes at the border. Finally we have obtained

v
(1)
1+ = v(2)1+ = v1− = 2π

π − γ
β ′

1 + 2 cosγ̃
. (4.14)

We have no explanation for this striking fact, that all velocities are equal in first order.
Nevertheless we are sure that the effect does not survive in higher order.

To close this part we have to consider the border line with sector II (see [1], equation
(4.8)).

0< α′ = |c̃|2γ d1(0)− c̄ � 1. (4.15)

The Fermi radiusb is determined by equation (4.1) using power expansion. The calculation
is straightforward, but rather tedious because of the presence of the functiond1(λ). But the
order of magnitude can be estimated easily. The two velocitiesv

(1)
1− andv(2)1+ (taken atλ = ∞)

obtain corrections to their (constant) limiting values from sector II of the order
√
α′. The third

velocityv(1)1+ (taken atλ = b) is of order
√
α′.

We did not consider the border of sectors I and 0 for 0< γ 6 π/3 because both sectors
are separated form each other by a singular line with a highly degenerate ground state which
is different from the other lines considered above.

5. Conclusions

First we make some general comments on the character of the behaviour of the velocities
considered. We parametrize the coupling constants by two parameters: onec, setting the
energy scale (below put to one); the other an angleϕ, which describes their ratio.

c̄ = c sinϕ

c̃ = c cosϕ.
(5.1)

From our results in section 4 one can see that, in general, the behaviour near the sector borders
is either linear or a square root in cosine/sine-functions ofϕ. Which behaviour emerges is
determined by the radiusb. Largeb produces Wiener–Hopf equations and linear behaviour,
smallb causes power expansions and a square root behaviour. Considering sector I only, one
could superficially conclude that this depends only on the sector on the other side of the border.
Our analysis in sector III shows that the situation reverses with respect to sector I.

In just one case we have found a discontinuity of one of the velocities when a sector border
is passed (see equation (4.12)). It is the case forv1− on the border I/II. Nothing of this kind
happens for sector III, because for smallα′ we have power expansion, which is incapable of
producing such an effect. On the other hand (for smallβ ′), v1− vanishes on the other side of
the border in sector IV. In general, one would expect a discontinuity only when a singular line
is crossed which means that an excitation with an infinite Fermi zone disappears at once (see
below). It is instructive to compile all analytically calculated velocities in one picture at the
special pointγ = 2π/5, which we have done in figure 2.

For convenience, we have given the analytical shape in the various sectors in table 2.
Looking at figure 2 one clearly sees two effects. First, the two singularity lines atϕ = π/2
(the vanishing of the(2,+)-strings) and atϕ = 3π/4 (the vanishing of the(1,+)-strings) cause
discontinuities for the speed of the remaining excitation. While the first line is universal for
arbitraryγ , the second one is peculiar toγ = 2π/5. For otherγ that line is replaced by sectors
I or III.
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Figure 2. The speeds of sound as functions of the angleϕ for γ = 2π/5 and those sectors where
all speeds of sound are known.

Table 2. The speeds of sound and the sector borders as functions of the angleϕ for γ = 2π/5.

Sectors 0 II IV V
Borders 0,π/2 π/2, 3π/4 3π/4, 2π − arctan 4 2π − arctan 4, 2π

v1+ 5 sinϕ 5/2 sinϕ + 5/2 cosϕ 0 0
v2+ 5 cosϕ 0 0
v1− 0 −10 cosϕ −5/3 sinϕ − 5/3 cosϕ

Second, one sees the two conformal points where two velocities intersect, one atϕ = π/4
and the other atϕ = π − arctan 5 [4].

Our calculations in the previous section allow us now to look more closely at what happens
for π/3< γ < 2π/5 when the above-mentioned singularity line is replaced by sector I. As far
as the limits of sectors II and IV are concerned, the only change is thatv1− no longer vanishes
at the border of sector IV. Now we make use of equations (4.9)–(4.12). They tell us, first,
that both velocities must reach their maximum (at differentϕ) within sector I and, second,
that there is at least one point of intersection in the same sector. At that point the finite size
corrections must exhibit a rather simple structure, as in [6].

We conjecture that there is no such effect in sector III but a strict proof will require further
calculations. Our calculations also show another interesting effect: atβ ′ = 0 all velocities
vanish.
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Finally we remark that we expect the theory atγ = 2π/5 and with both velocities equal to
be highly symmetric and of particular interest. Up to now it is only known that its central charge
is two. We were not able to calculate the operator dimensions analytically, because unlike in
[5], it requires knowledge of the dressed charge [6] and hence the explicit factorization of the
kernel.
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Appendix

s1(λ) = 1

2γ cosh(πλ/γ )

s2(λ) = 1

2(π − 2γ ) cosh(πλ/(π − 2γ ))

g(λ, α) =
∫ ∞
−∞

eiωλ coshωα/2

coshω(π − γ )/2dω.

References

[1] Dörfel B-D and Meißner St 1998J. Phys. A: Math. Gen.3161
[2] de Vega H J and Woynarovich F 1992J. Phys. A: Math. Gen.254499
[3] Meißner St and D̈orfel B-D 1996J. Phys. A: Math. Gen.291949
[4] Dörfel B-D and Meißner St 1996J. Phys. A: Math. Gen.296471
[5] Dörfel B-D and Meißner St 1997J. Phys. A: Math. Gen.301831
[6] Woynarovich F 1989J. Phys. A: Math. Gen.224243
[7] Kirillo v A N and Reshetikhin N Yu 1987J. Phys. A: Math. Gen.201565
[8] Tsvelick A M 1990Phys. Rev.B 42779

Frahm H 1992J. Phys. A: Math. Gen.251417
[9] Frahm H and R̈odenbeck C 1997J. Phys. A: Math. Gen.304467


